Most existing methods for image inpainting focus on learning the intra-image priors from the known regions of the current input image to infer the content of the corrupted regions in the same image. While such methods perform well on images with small corrupted regions, it is challenging for these methods to deal with images with large corrupted area due to two potential limitations: 1) such methods tend to overfit each single training pair of images relying solely on the intra-image prior knowledge learned from the limited known area; 2) the inter-image prior knowledge about the general distribution patterns of visual semantics, which can be transferred across images sharing similar semantics, is not exploited. In this paper, we propose the Generative Memory-Guided Semantic Reasoning Model (GM-SRM), which not only learns the intra-image priors from the known regions, but also distills the inter-image reasoning priors to infer the content of the corrupted regions. In particular, the proposed GM-SRM first pre-learns a generative memory from the whole training data to capture the semantic distribution patterns in a global view. Then the learned memory are leveraged to retrieve the matching inter-image priors for the current corrupted image to perform semantic reasoning during image inpainting. While the intra-image priors are used for guaranteeing the pixel-level content consistency, the inter-image priors are favorable for performing high-level semantic reasoning, which is particularly effective for inferring semantic content for large corrupted area. Extensive experiments on Paris Street View, CelebA-HQ, and Places2 benchmarks demonstrate that our GM-SRM outperforms the state-of-the-art methods for image inpainting in terms of both the visual quality and quantitative metrics.


翻译:多数现有图像绘制方法都侧重于从已知区域中学习当前输入图像的当前图像的图像内部偏好分布模式,以推断同一图像中腐败区域的内容。虽然这些方法在小腐败区域的图像中表现良好,但由于两个潜在的局限性,这些方法在处理大腐败区域的图像时具有挑战性:1)这类方法往往过分适合仅仅依靠从已知有限区域所学到的先前图像内部知识的每套图像;2)关于当前输入图像的当前图像图像中一般分布模式的预感的预感性知识没有被利用。虽然在本文中,这些方法在小腐败区域的图像中表现良好,但不仅学习了已知区域的图像内部图像前科,而且还在推断了腐败区域的内容。拟议的GM-SRM前期图像中,从整个培训数据中传递的可感知性推理学性记忆,以捕捉当前具有类似语义特征的图像中包含的语义分布模式,在之前的图像中,正在将我们所学到的内脏数据前的内存状态,在之前的图像中进行高级内置的内变。

0
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
专知会员服务
24+阅读 · 2021年9月19日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
25+阅读 · 2021年1月29日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员