Many practical recommender systems provide item recommendation for different users only via mining user-item interactions but totally ignoring the rich attribute information of items that users interact with. In this paper, we propose an attribute-augmented graph neural network model named Murzim. Murzim takes as input the graphs constructed from the user-item interaction sequences and corresponding item attribute sequences. By combining the GNNs with node aggregation and an attention network, Murzim can capture user preference patterns, generate embeddings for user-item interaction sequences, and then generate recommendations through next-item prediction. We conduct extensive experiments on multiple datasets. Experimental results show that Murzim outperforms several state-of-the-art methods in terms of recall and MRR, which illustrates that Murzim can make use of item attribute information to produce better recommendations. At present, Murzim has been deployed in MX Player, one of India's largest streaming platforms, and is recommending videos for tens of thousands of users.
翻译:许多实用建议系统仅通过采矿用户-项目互动向不同用户提供项目建议,但完全忽视用户互动的丰富属性信息。 在本文中,我们建议使用一个名为Murzim的属性强化图形神经网络模型。 Murzim 将用户-项目互动序列和相应的项目属性序列所构造的图表作为输入。 Murzim 通过将GNN与节点聚合和关注网络相结合, Murzim 能够捕捉用户偏好模式,生成用户-项目互动序列的嵌入,然后通过下一个项目预测产生建议。 我们在多个数据集上进行了广泛的实验。 实验结果表明, Murzim 在召回和MRR方面超越了几种最先进的方法,这表明Murzim 可以利用项目属性信息产生更好的建议。 目前, Murzim 已经在印度最大的流平台之一MX 播放器中部署, 并且正在为成千上万的用户推荐视频。