System-on-chip (SoC) developers increasingly rely on pre-verified hardware intellectual property (IP) blocks acquired from untrusted third-party vendors. These IPs might contain hidden malicious functionalities or hardware Trojans to compromise the security of the fabricated SoCs. Recently, supervised machine learning (ML) techniques have shown promising capability in identifying nets of potential Trojans in third party IPs (3PIPs). However, they bring several major challenges. First, they do not guide us to an optimal choice of features that reliably covers diverse classes of Trojans. Second, they require multiple Trojan-free/trusted designs to insert known Trojans and generate a trained model. Even if a set of trusted designs are available for training, the suspect IP could be inherently very different from the set of trusted designs, which may negatively impact the verification outcome. Third, these techniques only identify a set of suspect Trojan nets that require manual intervention to understand the potential threat. In this paper, we present VIPR, a systematic machine learning (ML) based trust verification solution for 3PIPs that eliminates the need for trusted designs for training. We present a comprehensive framework, associated algorithms, and a tool flow for obtaining an optimal set of features, training a targeted machine learning model, detecting suspect nets, and identifying Trojan circuitry from the suspect nets. We evaluate the framework on several Trust-Hub Trojan benchmarks and provide a comparative analysis of detection performance across different trained models, selection of features, and post-processing techniques. The proposed post-processing algorithms reduce false positives by up to 92.85%.
翻译:系统-芯片(SoC)开发商越来越依赖从不受信任的第三方供应商获得的事先核实的硬件知识产权(IP)块。这些IP可能包含隐藏的恶意功能或硬件木马,以损害伪造的 SoCs的安全。最近,监督的机器学习(ML)技术显示,在确定第三方IP(3PIP)中潜在的Trojan网方面,具有很有希望的能力。然而,它们带来了若干重大挑战。首先,它们并不指导我们最佳地选择可靠地涵盖不同类别特洛伊人的特点的功能。第二,它们需要多种无铁/受托设计,以插入已知的特洛伊人和制作一个经过培训的模型。即使有一套可信赖的设计可以用于培训,但可疑的IP可能与一套可信赖的设计有着内在的差别,这可能对核查结果产生不利影响。第三,这些技术只确定一组需要人工干预才能理解潜在威胁的可疑的特洛伊网络。在本文件中,我们介绍了一套基于系统机器学习(ML)的核查模型,一种基于对3PIP的系统性机器学习(ML)的核查解决方案,用来减少对可信赖的比较性设计,而无需为培训而需要的比较的比较分析后的分析。我们提出了一套最佳的测试后路路运测算的模型,一个测试后框架,一个有目标的模型,一个测试的测试的测试的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个跨的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个用于确定一个测试的模型,一个测试的模型,一个测试框架,一个测试的模型,一个测试的模型,一个测试的模型,一个跨的模型,一个测试的模型,一个测试的模型,一个用于的模型,一个测试的模型,一个用于的模型,一个测试的模型,一个用于的模型,一个用于的模型,一个测试的模型,一个用于的模型,一个用于的模型,一个测试的模型,一个比比测算方法,一个比比测算方法,一个比比比比比比比比的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个比。我们的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个测试的模型,一个比。我们的模型,一个测试