COVID-19 has fundamentally disrupted the way we live. Government bodies, universities, and companies worldwide are rapidly developing technologies to combat the COVID-19 pandemic and safely reopen society. Essential analytics tools such as contact tracing, super-spreader event detection, and exposure mapping require collecting and analyzing sensitive user information. The increasing use of such powerful data-driven applications necessitates a secure, privacy-preserving infrastructure for computation on personal data. In this paper, we analyze two such computing infrastructures under development at the University of Illinois at Urbana-Champaign to track and mitigate the spread of COVID-19. First, we present Safer Illinois, a system for decentralized health analytics supporting two applications currently deployed with widespread adoption: digital contact tracing and COVID-19 status cards. Second, we introduce the RokWall architecture for privacy-preserving centralized data analytics on sensitive user data. We discuss the architecture of these systems, design choices, threat models considered, and the challenges we experienced in developing production-ready systems for sensitive data analysis.
翻译:COVID-19 已经从根本上破坏了我们的生活方式。政府机关、大学和世界各地的公司正在迅速开发各种技术,以防治COVID-19 流行病,安全地重新开放社会。基本的分析工具,如联系追踪、超级传播事件探测和暴露情况测绘等,需要收集和分析敏感的用户信息。由于这些强大的数据驱动应用的日益使用,需要有一个安全、隐私保护的基础设施来计算个人数据。在本文件中,我们分析了在Urbana-Champaign的伊利诺伊大学正在开发的两种计算机基础设施,以跟踪和减缓COVID-19的传播。首先,我们介绍了一个分散式健康分析系统,即“加强伊利诺伊州安全”,一个分散式的健康分析系统,用以支持目前广泛采用的两种应用:数字联系追踪和COVID-19 状态卡。第二,我们引入了RokWall 结构,用于对敏感用户数据进行隐私保留集中数据分析。我们讨论了这些系统的结构、设计选择、考虑的威胁模型,以及我们在开发敏感数据分析的为生产准备的系统时遇到的挑战。