Generative Adversarial Networks (GANs) are widely used models to learn complex real-world distributions. In GANs, the training of the generator usually stops when the discriminator can no longer distinguish the generator's output from the set of training examples. A central question of GANs is that when the training stops, whether the generated distribution is actually close to the target distribution, and how the training process reaches to such configurations efficiently? In this paper, we established a theoretical results towards understanding this generator-discriminator training process. We empirically observe that during the earlier stage of the GANs training, the discriminator is trying to force the generator to match the low degree moments between the generator's output and the target distribution. Moreover, only by matching these empirical moments over polynomially many training examples, we prove that the generator can already learn notable class of distributions, including those that can be generated by two-layer neural networks.


翻译:生成Adversarial Networks (GANs) 是广泛使用的模式来学习复杂的真实世界分布。 在 GANs 中, 当歧视者无法再区分发电机的输出与一组培训示例时, 发电机的培训通常就停止了。 GANs的中心问题是, 当培训停止时, 生成的分布是否真正接近目标分布, 以及培训过程如何有效地达到这样的配置? 在本文中, 我们建立了一个理论结果, 以了解这个发电机与差异者的培训过程。 我们从经验上观察到, 在GANs 培训的早期阶段, 歧视者试图迫使发电机匹配发电机输出与目标分布之间的低度时间。 此外, 只有通过将这些经验性时刻与多个培训实例相匹配, 我们才能证明发电机已经学会了值得注意的分类, 包括由两层神经网络生成的分类。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年11月29日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
6+阅读 · 2018年3月29日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员