Random geometric graphs are random graph models defined on metric measure spaces. A random geometric graph is generated by first sampling points from a metric space and then connecting each pair of sampled points independently with a probability that depends on their distance. In recent work of Huang, Jiradilok, and Mossel~\cite{HJM24}, the authors study the problem of reconstructing an embedded manifold form a random geometric graph sampled from the manifold, where edge probabilities depend monotonically on the Euclidean distance between the embedded points. They show that, under mild regularity assumptions on the manifold, the sampling measure, and the connection probability function, it is possible to recover the pairwise Euclidean distances of the embedded sampled points up to a vanishing error as the number of vertices grows. In this work we consider a similar and arguably more natural problem where the metric is the Riemannian metric on the manifold. Again points are sampled from the manifold and a random graph is generated where the connection probability is monotone in the Riemannian distance. Perhaps surprisingly we obtain stronger results in this setup. Unlike the previous work that only considered dense graph we provide reconstruction algorithms from sparse graphs with average degree $n^{1/2}{\rm polylog}(n)$, where $n$ denotes the number of vertices. Our algorithm is also a more efficient algorithm for distance reconstruction with improved error bounds. The running times of the algorithm is $O(n^2\,{\rm polylog}(n))$ which up to polylog factor matches the size of the input graph. Our distance error also nearly matches the volumetric lower bounds for distance estimation.


翻译:随机几何图是在度量测度空间上定义的随机图模型。生成随机几何图时,首先从度量空间中采样点,然后根据点对之间的距离以相应概率独立连接每对采样点。在Huang、Jiradilok和Mossel最近的研究(见文献\\cite{HJM24})中,作者探讨了从嵌入流形采样的随机几何图重构该流形的问题,其中边的连接概率单调依赖于嵌入点之间的欧氏距离。他们证明,在流形、采样测度及连接概率函数满足温和正则性假设的条件下,随着顶点数量的增加,可以以渐近可忽略的误差恢复嵌入采样点间的成对欧氏距离。本文研究一个类似且更具自然性的问题:度量采用流形上的黎曼度量。同样从流形中采样点,并生成连接概率随黎曼距离单调变化的随机图。令人意外的是,在此设定下我们获得了更强的结果。与先前仅考虑稠密图的研究不同,我们提出了从稀疏图(平均度数为$n^{1/2}{\\rm polylog}(n)$,其中$n$表示顶点数)进行重构的算法。该算法同时是一种更高效的距离重构算法,具有改进的误差界。算法运行时间为$O(n^2\\,{\\rm polylog}(n))$,在多项式对数因子内与输入图的规模匹配。我们的距离误差也几乎达到了距离估计的体积下界。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员