The computational cost of simulating quantum many-body systems can often be reduced by taking advantage of physical symmetries. While methods exist for specific symmetry classes, a general algorithm to find the full permutation symmetry group of an arbitrary Pauli Hamiltonian is notably lacking. This paper introduces a new method that identifies this symmetry group by establishing an isomorphism between the Hamiltonian's permutation symmetry group and the automorphism group of a coloured bipartite graph constructed from the Hamiltonian. We formally prove this isomorphism and show that for physical Hamiltonians with bounded locality and interaction degree, the resulting graph has a bounded degree, reducing the computational problem of finding the automorphism group to polynomial time. The algorithm's validity is empirically confirmed on various physical models with known symmetries. We further show that the problem of deciding whether two Hamiltonians are permutation-equivalent is polynomial-time reducible to the graph isomorphism problem using our graph representation. This work provides a general, structurally exact tool for algorithmic symmetry finding, enabling the scalable application of these symmetries to Hamiltonian simulation problems.
翻译:利用物理对称性通常可以降低量子多体系统模拟的计算成本。尽管存在针对特定对称类的方法,但目前仍缺乏一种通用算法来寻找任意泡利哈密顿量的完整置换对称群。本文提出了一种新方法,通过建立哈密顿量置换对称群与由其构造的着色二分图的自同构群之间的同构关系来识别该对称群。我们严格证明了这一同构关系,并表明对于具有有限局域性和相互作用度的物理哈密顿量,所得图的度是有限的,从而将寻找自同构群的计算问题简化为多项式时间。该算法的有效性在多个已知对称性的物理模型上得到了实证验证。我们进一步证明,利用我们的图表示方法,判定两个哈密顿量是否置换等价的问题可多项式时间归约到图同构问题。这项工作为算法化对称性发现提供了一种通用的、结构精确的工具,使得这些对称性能够可扩展地应用于哈密顿量模拟问题。