The Persistent Homology Transform (PHT) summarizes a shape in $\R^m$ by collecting persistence diagrams obtained from linear height filtrations in all directions on $\mathbb{S}^{m-1}$. It enjoys strong theoretical guarantees, including continuity, stability, and injectivity on broad classes of shapes. A natural way to compare two PHTs is to use the bottleneck distance between their diagrams as the direction varies. Prior work has either compared PHTs by sampling directions or, in 2D, computed the exact \textit{integral} of bottleneck distance over all angles via a kinetic data structure. We improve the integral objective to $\tilde O(n^5)$ in place of earlier $\tilde O(n^6)$ bound. For the \textit{max} objective, we give a $\tilde O(n^3)$ algorithm in $\mathbb{R}^2$ and a $\tilde O(n^5)$ algorithm in $\mathbb{R}^3$.


翻译:持续同调变换(PHT)通过收集在$\mathbb{S}^{m-1}$上所有方向的线性高度过滤所获得的持续同调图,来概括$\R^m$中的形状。它具有强大的理论保证,包括在广泛形状类别上的连续性、稳定性和单射性。比较两个PHT的一种自然方法是使用它们在不同方向上的持续同调图之间的瓶颈距离。先前的工作要么通过采样方向来比较PHT,要么在二维空间中通过动力学数据结构计算所有角度上瓶颈距离的精确积分。我们将积分目标的计算复杂度改进为$\tilde O(n^5)$,取代了之前的$\tilde O(n^6)$界限。对于最大值目标,我们在$\mathbb{R}^2$中给出了一个$\tilde O(n^3)$算法,在$\mathbb{R}^3$中给出了一个$\tilde O(n^5)$算法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员