Scene Completion is the task of completing missing geometry from a partial scan of a scene. Most previous methods compute an implicit representation from range data using a Truncated Signed Distance Function (T-SDF) computed on a 3D grid as input to neural networks. The truncation decreases but does not remove the border errors introduced by the sign of SDF for open surfaces. As an alternative, we present an Unsigned Distance Function (UDF) as an input representation to scene completion neural networks. The proposed UDF is simple, and efficient as a geometry representation, and can be computed on any point cloud. In contrast to usual Signed Distance Functions, our UDF does not require normal computation. To obtain the explicit geometry, we present a method for extracting a point cloud from discretized UDF values on a sparse grid. We compare different SDFs and UDFs for the scene completion task on indoor and outdoor point clouds collected using RGB-D and LiDAR sensors and show improved completion using the proposed UDF function.
翻译:完成的场景是完成场景部分扫描中缺失的几何任务。 大部分先前的方法都根据在3D网格上计算为神经网络输入的“ T- SDF ”, 来计算从范围数据中隐含的表示法。 短径减少但没有消除SDF标志对开放表面的边界错误。 作为替代办法, 我们向场景完成神经网络提供一个输入表示法( UDF ) 。 拟议的UDF 简单, 有效, 可以在任何点云上计算。 与通常的“ T- SDF ” 函数相反, 我们的 UDF 不需要正常计算。 为了获得明确的几何方法, 我们提出了一个方法, 用来从稀疏的网格上离散的 UDF 值中提取点云。 我们比较使用 RGB- D 和 LIDAR 传感器收集的室内和户外点云完成现场任务的不同 SDF 和 UDF 。