This paper addresses the problem of learning abstractions that boost robot planning performance while providing strong guarantees of reliability. Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. We present a new approach for bootstrapping the entire hierarchical planning process. This allows us to compute abstract states and actions for new environments automatically using the critical regions predicted by a deep neural network with an auto-generated robot-specific architecture. We show that the learned abstractions can be used with a novel multi-source bi-directional hierarchical robot planning algorithm that is sound and probabilistically complete. An extensive empirical evaluation on twenty different settings using holonomic and non-holonomic robots shows that (a) our learned abstractions provide the information necessary for efficient multi-source hierarchical planning; and that (b) this approach of learning, abstractions, and planning outperforms state-of-the-art baselines by nearly a factor of ten in terms of planning time on test environments not seen during training.
翻译:本文探讨了学习抽象学的问题,这些抽象学能够提高机器人规划性能,同时又能提供可靠的有力保障。尽管最先进的等级机器人规划算法允许机器人高效率地计算长视距运动计划,以实现用户期望的任务,但这些方法通常依赖于需要专家亲手设计的环境依赖状态和行动抽象学。我们提出了对整个等级规划过程进行制导的新方法。这使我们能够利用由由一个自动生成的机器人特定结构的深层神经网络预测的关键区域,自动地为新环境计算出抽象状态和行动。我们表明,可以使用新颖的多源双向双向等级机器人规划算法来使用所学的抽象抽象学和新环境行动,这种算法是健全和概率完整的。对20个不同环境进行的广泛经验评估显示,(a) 我们所学的抽象学的抽象学为有效的多源等级规划提供了必要的信息;以及(b) 这种学习、抽象学和规划超越现代的基线的方法,几乎是10个时间因素,用于规划在未见的测试环境中的试验环境。