The finite sample properties of estimators are usually understood or approximated using asymptotic theories. Two main asymptotic constructions have been used to characterize the presence of many instruments. The first assumes that the number of instruments increases with the sample size. I demonstrate that in this case, one of the key assumptions used in the asymptotic construction may imply that the number of ``effective" instruments should be finite, resulting in an internal contradiction. The second asymptotic representation considers that the number of instrumental variables (IVs) may be finite, infinite, or even a continuum. The number does not change with the sample size. In this scenario, the regularized estimator obtained depends on the topology imposed on the set of instruments as well as on a regularization parameter. These restrictions may induce a bias or restrict the set of admissible instruments. However, the assumptions are internally coherent. The limitations of many IVs asymptotic assumptions provide support for finite sample distributional studies to better understand the behavior of many IV estimators.
翻译:估计器的有限抽样特性通常被理解,或以非现成理论为近似。两种主要的无现成结构被用于描述许多仪器的存在特征。第一种假设是仪器数量随着抽样规模的增加而增加。我证明,在这种情况下,在无现成构造中使用的关键假设之一可能意味着“有效”仪器的数量应当有限,从而造成内部矛盾。第二个无现成代表认为工具变量(IVs)的数量可能是有限的、无限的,甚至是一个连续的。随着抽样规模的大小,数量没有变化。在这种情形下,获得的正规化估计器取决于对成套仪器施加的地形以及正规化参数。这些限制可能会引起偏差或限制一套可接受的仪器。然而,这些假设在内部是一致的。许多四类“有效”仪器的局限性为有限的抽样分布研究提供了支持,以便更好地了解许多四类估计器的行为。