The statistical analysis of data stemming from dynamical systems, including, but not limited to, time series, routinely relies on the estimation of information theoretical quantities, most notably Shannon entropy. To this purpose, possibly the most widespread tool is provided by the so-called plug-in estimator, whose statistical properties in terms of bias and variance were investigated since the first decade after the publication of Shannon's seminal works. In the case of an underlying multinomial distribution, while the bias can be evaluated by knowing support and data set size, variance is far more elusive. The aim of the present work is to investigate, in the multinomial case, the statistical properties of an estimator of a parameter that describes the variance of the plug-in estimator of Shannon entropy. We then exactly determine the probability distributions that maximize that parameter. The results presented here allow to set upper limits to the uncertainty of entropy assessments under the hypothesis of memoryless underlying stochastic processes.


翻译:对来自动态系统的数据的统计分析,包括但不限于时间序列,通常依赖于对信息理论数量的估计,最主要是香农星。为此目的,最广泛的工具可能由所谓的插头估计器提供,从香农原始作品出版后的第一个十年开始,该估计器在偏差和差异方面的统计属性就进行了调查。在基础多名分布的情况下,虽然可以通过了解支持和数据集大小来评价偏差,但差异远非易事。在多名例子中,当前工作的目的是调查估计参数的统计属性,该参数说明香农柱顶端估计器的插头估计器的差异。然后,我们精确地确定使该参数最大化的概率分布。这里介绍的结果使得在无记忆基础随机过程的假设下,可以对酶评估的不确定性设定上限。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
52+阅读 · 2020年9月7日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年12月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
52+阅读 · 2020年9月7日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年12月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员