We present an adaptive refinement algorithm for T-splines on unstructured 2D meshes. While for structured 2D meshes, one can refine elements alternatingly in horizontal and vertical direction, such an approach cannot be generalized directly to unstructured meshes, where no two unique global mesh directions can be assigned. To resolve this issue, we introduce the concept of direction indices, i.e., integers associated to each edge, which are inspired by theory on higher-dimensional structured T-splines. Together with refinement levels of edges, these indices essentially drive the refinement scheme. We combine these ideas with an edge subdivision routine that allows for I-nodes, yielding a very flexible refinement scheme that nicely distributes the T-nodes, preserving global linear independence, analysis-suitability (local linear independence) except in the vicinity of extraordinary nodes, sparsity of the system matrix, and shape regularity of the mesh elements. Further, we show that the refinement procedure has linear complexity in the sense of guaranteed upper bounds on a) the distance between marked and additionally refined elements, and on b) the ratio of the numbers of generated and marked mesh elements.
翻译:我们为未结构的 2D 模贝壳上的T 线提供了一种适应性改进算法。 对于结构化的 2D 模贝贝, 人们可以对横向和垂直方向交替的元素进行精细化, 但这种方法不能直接推广到结构化的模贝, 无法在其中指定两个独特的全球网格方向。 为了解决这个问题, 我们引入了方向指数的概念, 即每个边缘的整数, 由高维结构T 线的理论所启发。 这些指数与精细的边缘水平一起, 基本上推动了改进计划。 我们将这些想法与边缘分级常规结合起来, 使I- 节点能够使用, 产生一个非常灵活的精细化的精细化计划, 将T 节相配, 维护全球线性独立性、 分析性( 局部线性独立性), 除非在非常节点附近, 系统矩阵的宽度, 和 使网格元素的规律性形成。 此外, 我们表明, 精细程序在有保证的上层意义上具有线性的复杂性。