Adversarial training is one of the most powerful methods to improve the robustness of pre-trained language models (PLMs). However, this approach is typically more expensive than traditional fine-tuning because of the necessity to generate adversarial examples via gradient descent. Delving into the optimization process of adversarial training, we find that robust connectivity patterns emerge in the early training phase (typically $0.15\sim0.3$ epochs), far before parameters converge. Inspired by this finding, we dig out robust early-bird tickets (i.e., subnetworks) to develop an efficient adversarial training method: (1) searching for robust tickets with structured sparsity in the early stage; (2) fine-tuning robust tickets in the remaining time. To extract the robust tickets as early as possible, we design a ticket convergence metric to automatically terminate the searching process. Experiments show that the proposed efficient adversarial training method can achieve up to $7\times \sim 13 \times$ training speedups while maintaining comparable or even better robustness compared to the most competitive state-of-the-art adversarial training methods.
翻译:Adversari 培训是提高预先培训语言模式(PLMs)的稳健性的最有力方法之一。然而,由于有必要通过梯度下降产生对抗性实例,这一方法通常比传统的微调更昂贵,因为需要通过梯度下降产生对抗性实例。在进入对抗性培训的最优化过程中,我们发现在早期培训阶段(通常为0.15\sim0.3美元,远在参数交汇之前)出现了稳健的连通模式。根据这一发现,我们挖掘了稳健的早期鸟门票(即子网络),以开发一种有效的对抗性培训方法:(1) 在早期寻找结构紧张的稳健的票;(2) 在剩余时间内微调稳健的票。为了尽早获取稳健的票,我们设计了一张票面趋同标准,以自动终止搜索过程。实验表明,拟议的有效对抗性培训方法可以达到7小时,同时保持与最有竞争力的对抗性培训方法相比的可比甚至更强的稳健性。