Face presentation attack detection plays a critical role in the modern face recognition pipeline. A face presentation attack detection model with good generalization can be obtained when it is trained with face images from different input distributions and different types of spoof attacks. In reality, training data (both real face images and spoof images) are not directly shared between data owners due to legal and privacy issues. In this paper, with the motivation of circumventing this challenge, we propose a Federated Face Presentation Attack Detection (FedPAD) framework that simultaneously takes advantage of rich fPAD information available at different data owners while preserving data privacy. In the proposed framework, each data center locally trains its own fPAD model. A server learns a global fPAD model by iteratively aggregating model updates from all data centers without accessing private data in each of them. To equip the aggregated fPAD model in the server with better generalization ability to unseen attacks from users, following the basic idea of FedPAD, we further propose a Federated Generalized Face Presentation Attack Detection (FedGPAD) framework. A federated domain disentanglement strategy is introduced in FedGPAD, which treats each data center as one domain and decomposes the fPAD model into domain-invariant and domain-specific parts in each data center. Two parts disentangle the domain-invariant and domain-specific features from images in each local data center, respectively. A server learns a global fPAD model by only aggregating domain-invariant parts of the fPAD models from data centers and thus a more generalized fPAD model can be aggregated in server. We introduce the experimental setting to evaluate the proposed FedPAD and FedGPAD frameworks and carry out extensive experiments to provide various insights about federated learning for fPAD.


翻译:在现代面部识别管道中, 面部显示器显示器显示器显示器检测器具有关键作用。 面部显示器显示器检测模型在使用来自不同输入分布和不同类型攻击的面部图像进行培训时, 可以取得具有良好通用性的面部显示器检测模型。 事实上, 由于法律和隐私问题, 数据所有者之间没有直接共享培训数据( 真实面部图像和表面图像) 。 在本文中, 为了避免这一挑战, 我们提议了一个联邦面部显示器攻击检测( FedPAD)框架, 该框架同时利用不同数据所有者现有的丰富的FPAD信息, 并同时保存数据隐私。 在拟议框架中, 每个数据中心都用自己的 FPAD 模型来训练自己的域域内服务器模型。 一个服务器通过迭接地汇总所有数据中心的模型更新来学习全球FPADD模式。 因此, 为了在服务器中使综合的FPADA模型更能概括地显示器攻击用户的暗攻击, 我们进一步提议一个FDDGPA 模型( FedGADA) 框架。 一个化域域域的解算出一个FGPAD模型, 在内部的每个域域域域域内, 将每个域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域数据作为数据库学习每个域域域域域域域域域域域域域域域数据, 学习每个域数据。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员