This case study investigates the extent to which a language model (GPT-2) is able to capture native speakers' intuitions about implicit causality in a sentence completion task. We first reproduce earlier results (showing lower surprisal values for pronouns that are congruent with either the subject or object, depending on which one corresponds to the implicit causality bias of the verb), and then examine the effects of gender and verb frequency on model performance. Our second study examines the reasoning ability of GPT-2: is the model able to produce more sensible motivations for why the subject VERBed the object if the verbs have stronger causality biases? We also developed a methodology to avoid human raters being biased by obscenities and disfluencies generated by the model.
翻译:本案例研究调查了语言模式(GPT-2)能够在多大程度上捕捉到当地语言使用者对完成一项判决的隐含因果关系的直觉。我们首先转载了早期的结果(显示与主题或对象一致的名词的超值较低,取决于与动词的隐含因果关系偏差对应的哪个),然后研究性别和动词频率对模型性能的影响。我们的第二项研究审查了GPT-2的推理能力:如果动词具有更强的因果关系偏差,该模型能够产生更合理的动机来说明为什么该主题会以VERB作为对象?我们还制定了一种方法来避免人为比率者因模型造成的淫秽和不雅而产生偏差。