Shortening acquisition time and reducing the motion artifacts are two of the most essential concerns in magnetic resonance imaging. As a promising solution, deep learning-based high-quality MR image restoration has been investigated to generate higher resolution and motion artifact-free MR images from lower resolution images acquired with shortened acquisition time, without costing additional acquisition time or modifying the pulse sequences. However, numerous problems still exist to prevent deep learning approaches from becoming practical in the clinic environment. Specifically, most of the prior works focus solely on the network model but ignore the impact of various downsampling strategies on the acquisition time. Besides, the long inference time and high GPU consumption are also the bottlenecks to deploy most of the prior works in clinics. Furthermore, prior studies employ random movement in retrospective motion artifact generation, resulting in uncontrollable severity of motion artifact. More importantly, doctors are unsure whether the generated MR images are trustworthy, making diagnosis difficult. To overcome all these problems, we employed a unified 2D deep learning neural network for both 3D MRI super resolution and motion artifact reduction, demonstrating such a framework can achieve better performance in 3D MRI restoration tasks compared to other states of the art methods and remains the GPU consumption and inference time significantly low, thus easier to deploy. We also analyzed several downsampling strategies based on the acceleration factor, including multiple combinations of in-plane and through-plane downsampling, and developed a controllable and quantifiable motion artifact generation method. At last, the pixel-wise uncertainty was calculated and used to estimate the accuracy of the generated image, providing additional information for reliable diagnosis.


翻译:在磁共振成像中,缩短获取时间和减少运动文物的时间是两个最基本的问题。作为一种很有希望的解决办法,已经调查了深层次的学习基础高质量的MR图像恢复,以产生更高的分辨率和运动上无艺术品的MR图像,这些图像来自获得时间缩短的低分辨率图像,获得时间缩短,获得时间不增加,也不改变脉冲序列。然而,在防止深层学习方法在诊所环境中成为实际操作方面仍然存在许多问题。具体地说,大多数先前的工程仅侧重于网络模型,忽视了各种下调战略对获取时间的影响。此外,长期的推导时间和高的GPU消费也是将大部分以前的工作部署到诊所的瓶颈。此外,以往的研究采用随机移动动作生成的不易移动的MRM图像,导致无法控制动作序列。为了克服所有这些问题,我们使用了统一的2D深层神经网络,用于3D MRI的下调和运动的下调时段。此外,这种框架还可以在3DMRI恢复3中取得更好的表现,而高精度的精确度消耗也是大部分的恢复任务,因此,在快速的计算方法中,在快速的计算中,在快速的计算方法上,在更精确的计算方法上,在更精确的计算中,在更精确的计算中,在更精确的计算中,在更精确的计算方法上,在更精确的计算中,在快速的计算方法上,在快速的计算方法上,在使用。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
11+阅读 · 2020年8月3日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员