Chan, Har-Peled, and Jones [2020] recently developed locality-sensitive ordering (LSO), a new tool that allows one to reduce problems in the Euclidean space $\mathbb{R}^d$ to the $1$-dimensional line. They used LSO's to solve a host of problems. Later, Buchin, Har-Peled, and Ol{\'{a}}h [2019,2020] used the LSO of Chan {\em et al. } to construct very sparse \emph{reliable spanners} for the Euclidean space. A highly desirable feature of a reliable spanner is its ability to withstand a massive failure: the network remains functioning even if 90\% of the nodes fail. In a follow-up work, Har-Peled, Mendel, and Ol{\'{a}}h [2021] constructed reliable spanners for general and topologically structured metrics. Their construction used a different approach, and is based on sparse covers. In this paper, we develop the theory of LSO's to non-Euclidean metrics by introducing new types of LSO's suitable for general and topologically structured metrics. We then construct such LSO's, as well as constructing considerably improved LSO's for doubling metrics. Afterwards, we use our new LSO's to construct reliable spanners with improved stretch and sparsity parameters. Most prominently, we construct $\tilde{O}(n)$-size reliable spanners for trees and planar graphs with the optimal stretch of $2$. Along the way to the construction of LSO's and reliable spanners, we introduce and construct ultrametric covers, and construct $2$-hop reliable spanners for the line.


翻译:Chan, Har- Peled, 和 Jones [2020] 最近开发了对地敏感值的定购(LSO), 这是一种新工具, 使得人们能够将欧洲大陆空间的问题降低到$\ mathbb{R ⁇ d$到1美元线。 他们使用LSO解决了一系列问题。 后来, Buchin, Har- Peled, Har- Peled, 和 Ol_ {a}h [2019, 2020], 使用Chan 和 Exporal 的 LSO, 用于为欧洲大陆空间构建非常稀薄的计算器。 在本文中, 我们开发了LSO 的理论, 用于非欧洲大陆的建模, 建模LSO 的建模 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
159+阅读 · 2020年1月16日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
3+阅读 · 2019年4月19日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
9+阅读 · 2021年3月8日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
159+阅读 · 2020年1月16日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月19日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员