We offer simple theoretical results that justify incorporating machine learning in the standard linear instrumental variable setting that is prevalent in empirical research in economics. The key idea is to use machine learning, combined with sample-splitting, to predict the treatment variable from the instrument and any exogenous covariates, and then use this predicted treatment and the covariates as technical instruments to recover the coefficients in the second-stage. This allows the researcher to extract non-linear co-variation between the treatment and instrument that may dramatically improve estimation precision and robustness by boosting instrument strength. Importantly, we constrain the machine-learned predictions to be linear in the exogenous covariates, thus avoiding spurious identification arising from non-linear relationships between the treatment and the covariates rather than from the instrument itself. We show that this approach delivers consistent and asymptotically normal estimates under weak conditions and that it may be adapted to be semiparametrically efficient (Chamberlain, 1992). Our method preserves standard intuitions and interpretations of linear instrumental variable methods and provides a simple, user-friendly upgrade to the applied economics toolbox. We illustrate our method with an example in law and criminal justice, examining the causal effect of appellate court reversals on district court sentencing decisions.
翻译:我们提供了简单的理论结果,证明将机器学习纳入经济学实验研究中普遍存在的标准线性工具变量设置中是合理的。关键思想是利用机器学习,加上样本分离,预测仪器和任何外生共变体的处理变量,然后将这种预测治疗和共变体作为技术工具,以恢复第二阶段的系数。这使研究者能够提取治疗和工具之间的非线性共变法,通过提高仪器强度,大大提高估算精确度和稳健性。重要的是,我们限制机学预测在外生同源体中的线性,从而避免因治疗与共变体之间的非线性关系而不是从工具本身产生的虚假识别。我们表明,这种方法在薄弱的条件下提供了一致和无线性正常的估计,并且可以调整为半线性效率(Chamberlain,1992年)。我们的方法保留了线性工具变量的标准直观和解释,并为应用的经济工具箱提供了简单、方便用户的升级。我们用法院的定罪判决方法在法律和刑事判决中以地区性判决结果为例。