We present a short proof of the \v{C}adek-Kr\v{c}\'al-Matou\v{s}ek-Vok\v{r}\'inek-Wagner result from the title (in the following form due to Filakovsk\'y-Wagner-Zhechev). For any fixed even $l$ there is no algorithm recognizing the extendability of the identity map of $S^l$ to a PL map $X\to S^l$ of given $2l$-dimensional simplicial complex $X$ containing a subdivision of $S^l$ as a given subcomplex. We also exhibit a gap in the Filakovsk\'y-Wagner-Zhechev proof that embeddability of complexes is undecidable in codimension $>1$.
翻译:我们提出一个简短的证明,证明标题(由于Filakovsk\'y-Wagner-Zhechev的缘故,以下列形式)产生了“v{C}adek-Kr\v}c ⁇ al-Matou\v{s}ek-Vok\v{r ⁇ 'inek-Wagner-Wagner-Zhechev”这一标题。对于任何固定的甚至l$美元的身份图,对于一个包含一个子相容值为$S ⁇ l$的PL地图,没有一种确认$S ⁇ l$是否可扩展至$X\to S ⁇ l$的PL地图,其中给出了$2l$-simlicial Complical $xx$,作为一个子相容值为$S ⁇ l$的P$X。我们还在Filakovsk\'y-Wagner-Zhechev的证据中展示了一个空白点,即复合物的粘合度在1美元中是不可分化的。