Using the resolvent operator, we develop an algorithm for computing smoothed approximations of spectral measures associated with self-adjoint operators. The algorithm can achieve arbitrarily high-orders of convergence in terms of a smoothing parameter for computing spectral measures of general differential, integral, and lattice operators. Explicit pointwise and $L^p$-error bounds are derived in terms of the local regularity of the measure. We provide numerical examples, including a partial differential operator, a magnetic tight-binding model of graphene, and compute one thousand eigenvalues of a Dirac operator to near machine precision without spectral pollution. The algorithm is publicly available in $\texttt{SpecSolve}$, which is a software package written in MATLAB.
翻译:使用固态操作员,我们开发了一种算法,用于计算与自联操作员相关的光谱测量光度光度平滑近似值。算法可以实现任意的高度趋同,在光谱操作员的光谱测量光度计算光度测算光度测算光度测算光度测算光度测算光度测算光度测算光度测算参数的光度测算参数上一般差、集成和光度测算操作员的光度测算光度测算光度测算光度。根据测量的当地规律,可以得出明确的点值和$L ⁇ p$P$-erorror 界限。我们提供了数字示例,包括部分差测距操作员、磁性紧凑的石墨模型,并计算出1 000个Dirac操作员在不受到光谱污染的情况下接近机器精度的元值。该算法以$\ text{Speclessolve}$公开提供,这是以MATLAB书写成的软件包件。