This study proposes a new generative adversarial network (GAN) for generating realistic orders in financial markets. In some previous works, GANs for financial markets generated fake orders in continuous spaces because of GAN architectures' learning limitations. However, in reality, the orders are discrete, such as order prices, which has minimum order price unit, or order types. Thus, we change the generation method to place the generated fake orders into discrete spaces in this study. Because this change disabled the ordinary GAN learning algorithm, this study employed a policy gradient, frequently used in reinforcement learning, for the learning algorithm. Through our experiments, we show that our proposed model outperforms previous models in generated order distribution. As an additional benefit of introducing the policy gradient, the entropy of the generated policy can be used to check GAN's learning status. In the future, higher performance GANs, better evaluation methods, or the applications of our GANs can be addressed.
翻译:这项研究提出了一个新的基因对抗网络(GAN),用于在金融市场上产生现实的订单。在以前的一些工作中,GAN为金融市场制造的订单由于GAN结构的学习限制而在连续空间产生了假订单。然而,在现实中,订单是独立的,例如订单价格,有最低订单价格单位,或订单类型。因此,我们改变生成的假订单的生成方法,将生成的订单放入本研究的分离空间。由于这一变化使普通的GAN学习算法失去功能,本研究采用了一种政策梯度,经常用于强化学习,用于学习算法。我们通过实验,展示了我们提议的模型在生成的订单分配中超过了以前的模型。作为引入政策梯度的一个额外好处,生成的政策的昆虫可以用来检查GAN的学习状况。在未来,可以解决更高的绩效GAN、更好的评估方法或我们GAN的应用问题。