Watermarking is the procedure of encoding desired information into an image to resist potential noises while ensuring the embedded image has little perceptual perturbations from the original image. Recently, with the tremendous successes gained by deep neural networks in various fields, digital watermarking has attracted increasing number of attentions. The neglect of considering the pixel importance within the cover image of deep neural models will inevitably affect the model robustness for information hiding. Targeting at the problem, in this paper, we propose a novel deep watermarking scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism to endow different importance to different pixels. With the proposed method, the model is able to spotlight pixels with more robustness for embedding data. Besides, from an orthogonal point of view, in order to increase the model embedding capacity, we propose a complementary message coding module. Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets under multiple settings.


翻译:水标记是将理想信息编码成图像以抵制潜在噪音的程序,同时确保嵌入的图像与原始图像没有多少感知干扰。 最近,随着深神经网络在各个领域取得的巨大成功,数字水标记吸引了越来越多的注意力。 忽视深神经模型封面图像中的像素重要性将不可避免地影响信息隐藏的模型的稳健性。 在本文中,我们提出了与反梯度注意(IGA)一道的新的深水标记方案,将对抗性学习和关注机制的理念与不同像素的不同重要性进行梳理。 采用拟议方法,该模型能够以更坚固的嵌入数据聚焦像素。 此外,从一个或多角度的观点来看,为了增加模型嵌入能力,我们提议了一个补充信息编码模块。 随机而广泛的实验显示,拟议的模型超越了多个环境中两种流行数据集的状态方法。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
110+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年1月13日
Arxiv
0+阅读 · 2021年1月9日
Arxiv
4+阅读 · 2019年8月7日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员