We consider the problem of decision-making using panel data, in which a decision-maker gets noisy, repeated measurements of multiple units (or agents). We consider a setup where there is a pre-intervention period, when the principal observes the outcomes of each unit, after which the principal uses these observations to assign a treatment to each unit. Unlike this classical setting, we permit the units generating the panel data to be strategic, i.e. units may modify their pre-intervention outcomes in order to receive a more desirable intervention. The principal's goal is to design a strategyproof intervention policy, i.e. a policy that assigns units to their utility-maximizing interventions despite their potential strategizing. We first identify a necessary and sufficient condition under which a strategyproof intervention policy exists, and provide a strategyproof mechanism with a simple closed form when one does exist. Along the way, we prove impossibility results for strategic multiclass classification, which may be of independent interest. When there are two interventions, we establish that there always exists a strategyproof mechanism, and provide an algorithm for learning such a mechanism. For three or more interventions, we provide an algorithm for learning a strategyproof mechanism if there exists a sufficiently large gap in the principal's rewards between different interventions. Finally, we empirically evaluate our model using real-world panel data collected from product sales over 18 months. We find that our methods compare favorably to baselines which do not take strategic interactions into consideration, even in the presence of model misspecification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员