Topology optimization is widely used by engineers during the initial product development process to get a first possible geometry design. The state-of-the-art is the iterative calculation, which requires both time and computational power. Some newly developed methods use artificial intelligence to accelerate the topology optimization. These require conventionally pre-optimized data and therefore are dependent on the quality and number of available data. This paper proposes an AI-assisted design method for topology optimization, which does not require pre-optimized data. The designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling (the volume percentage filled by material) as input data. In the training phase, geometries generated on the basis of random input data are evaluated with respect to given criteria. The results of those evaluations flow into an objective function which is minimized by adapting the predictor's parameters. After the training is completed, the presented AI-assisted design procedure supplies geometries which are similar to the ones generated by conventional topology optimizers, but requires a small fraction of the computational effort required by those algorithms. We anticipate our paper to be a starting point for AI-based methods that requires data, that is hard to compute or not available.


翻译:工程师在初始产品开发过程中广泛使用地形优化,以获得第一个可能的几何设计。最先进的是迭代计算,这需要时间和计算力。一些新开发的方法使用人工智能加速地形优化。这些新开发的方法需要常规的预选数据,因此取决于可用数据的质量和数量。本文件提议了一种用于地形优化的人工辅助设计方法,不需要预选数据。设计由人工神经网络、预测器提供,其依据是边界条件和填充程度(材料填充的数量百分比)作为输入数据。在培训阶段,根据随机输入数据生成的地理比例根据特定标准进行评估。这些评估的结果流到一个客观的功能,通过调整预测参数而将其减少到最低程度。在培训完成后,介绍的人工辅助设计程序提供与传统地形优化者生成的数据相似的地理比例,但需要少量的计算努力(材料填充量百分比)作为输入数据。在随机输入数据数据的基础上生成的地理比例,根据特定标准进行评估。这些评估的结果流到一个客观的功能,通过调整预测参数最小化为最小化。在培训完成后,展示的人工辅助设计程序提供了与传统地形优化优化生成器所生成的数据,但我们的硬算方法需要一个硬数据。

0
下载
关闭预览

相关内容

最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
已删除
将门创投
3+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员