Deep learning models are full of hyperparameters, which are set manually before the learning process can start. To find the best configuration for these hyperparameters in such a high dimensional space, with time-consuming and expensive model training / validation, is not a trivial challenge. Bayesian optimization is a powerful tool for the joint optimization of hyperparameters, efficiently trading off exploration and exploitation of the hyperparameter space. In this paper, we discuss Bayesian hyperparameter optimization, including hyperparameter optimization, Bayesian optimization, and Gaussian processes. We also review BoTorch, GPyTorch and Ax, the new open-source frameworks that we use for Bayesian optimization, Gaussian process inference and adaptive experimentation, respectively. For experimentation, we apply Bayesian hyperparameter optimization, for optimizing group weights, to weighted group pooling, which couples unsupervised tiered graph autoencoders learning and supervised graph prediction learning for molecular graphs. We find that Ax, BoTorch and GPyTorch together provide a simple-to-use but powerful framework for Bayesian hyperparameter optimization, using Ax's high-level API that constructs and runs a full optimization loop and returns the best hyperparameter configuration.


翻译:深层学习模型充满了超参数,这些模型是在学习过程开始之前手工设置的。 在如此高的维度空间找到这些超参数的最佳配置,同时进行耗时和昂贵的模型培训/验证,这不是一个微不足道的挑战。 贝叶斯优化是联合优化超参数、高效交换对超参数空间的探索和利用的强大工具。 在本文中, 我们讨论巴伊西亚超参数优化, 包括超参数优化、 巴耶斯优化和高斯进程。 我们还审查了博托奇、 吉普切和阿克斯, 我们分别用于巴耶斯优化、 高斯进程推断和适应性实验的新的开放源框架。 在实验中, 我们应用巴伊斯超参数优化, 优化群体重量, 以及加权组合, 夫妇们可以使用不严密的分层图形自动分析器学习和监督用于分子图的图表预测学习。 我们发现, Ax、 博托尔奇和GPyTorch共同提供了一个简单但强大的开放源框架, 分别用于巴耶斯优化、 高级平面结构, 和高级平面结构, 使用最高平面结构, 进行高级平整。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
专知会员服务
161+阅读 · 2020年1月16日
专知会员服务
116+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年10月11日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
0+阅读 · 2021年9月3日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
专知会员服务
161+阅读 · 2020年1月16日
专知会员服务
116+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年10月11日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员