In this paper, we first extend the finite distortion problem from the bounded domains in $\mathbb{R}^2$ to the closed genus-zero surfaces in $\mathbb{R}^3$ by the stereographic projection. Then we derive a theoretical foundation for spherical equiareal parameterizations between a simply connected closed surface $\mathcal{M}$ and a unit sphere $\mathbb{S}^2$ via minimizing the total area distortion energy on $\overline{\mathbb{C}}$. Provided we determine the minimizer of the total area distortion energy, the minimizer composed with the initial conformal map determines the equiareal map between the extended planes. Taking the inverse stereographic projection, we can derive the equiareal map between $\mathcal{M}$ and $\mathbb{S}^2$. The total area distortion energy can be rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres, respectively, and can be decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization for the computation of the spherical equiareal parameterization between $\mathcal{M}$ and $\mathbb{S}^2$. In addition, under some mild conditions, we verify that our proposed algorithm has asymptotically R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate the assumptions for convergence always hold and indicate the efficiency, reliability and robustness of the developed modified stretch energy minimization.
翻译:在本文中, 我们首先将限值扭曲问题从 $mathbb{R ⁇ 2$ 的封闭域内, 以 $mathb{R ⁇ 3$ 扩大到以星座投影为单位的封闭域内 $\mathcal{M}$ 美元 和单位域内 $\mathbb{S ⁇ 2$ 。 只要我们确定总区域扭曲能量的最小值, 由初始符合性地图构成的最小值将决定扩展平面之间的等离质地图。 然后我们得出一个理论基础, 在简单连接的封闭表面表面 $\mathcal{M} 美元和单位域域内 $mathb{S ⁇ 2$ 。 总面积扭曲能量可以重新写成与南半球和北半球相关的平流量能量的总和值。 只要我们确定总能量变最小值能量的最小值能量的最小值, 由初步的平面平面平面平面计算, 也就是我们所开发的平面平面平面平面平面平面变的能源计算 基础 。