In this paper, we first extend the finite distortion problem from the bounded domains in $\mathbb{R}^2$ to the closed genus-zero surfaces in $\mathbb{R}^3$ by the stereographic projection. Then we derive a theoretical foundation for spherical equiareal parameterizations between a simply connected closed surface $\mathcal{M}$ and a unit sphere $\mathbb{S}^2$ via minimizing the total area distortion energy on $\overline{\mathbb{C}}$. Provided we determine the minimizer of the total area distortion energy, the minimizer composed with the initial conformal map determines the equiareal map between the extended planes. Taking the inverse stereographic projection, we can derive the equiareal map between $\mathcal{M}$ and $\mathbb{S}^2$. The total area distortion energy can be rewritten into the sum of Dirichlet energies associated with the southern and northern hemispheres, respectively, and can be decreased by alternatingly solving the corresponding Laplacian equations. Based on this foundational theory, we develop a modified stretch energy minimization for the computation of the spherical equiareal parameterization between $\mathcal{M}$ and $\mathbb{S}^2$. In addition, under some mild conditions, we verify that our proposed algorithm has asymptotically R-linear convergence or forms a quasi-periodic solution. Numerical experiments on various benchmarks validate the assumptions for convergence always hold and indicate the efficiency, reliability and robustness of the developed modified stretch energy minimization.


翻译:在本文中, 我们首先将限值扭曲问题从 $mathbb{R ⁇ 2$ 的封闭域内, 以 $mathb{R ⁇ 3$ 扩大到以星座投影为单位的封闭域内 $\mathcal{M}$ 美元 和单位域内 $\mathbb{S ⁇ 2$ 。 只要我们确定总区域扭曲能量的最小值, 由初始符合性地图构成的最小值将决定扩展平面之间的等离质地图。 然后我们得出一个理论基础, 在简单连接的封闭表面表面 $\mathcal{M} 美元和单位域域内 $mathb{S ⁇ 2$ 。 总面积扭曲能量可以重新写成与南半球和北半球相关的平流量能量的总和值。 只要我们确定总能量变最小值能量的最小值能量的最小值, 由初步的平面平面平面平面计算, 也就是我们所开发的平面平面平面平面平面平面变的能源计算 基础 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
0+阅读 · 2022年9月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员