The optimality and sensitivity of the empirical risk minimization problem with relative entropy regularization (ERM-RER) are investigated for the case in which the reference is a sigma-finite measure instead of a probability measure. This generalization allows for a larger degree of flexibility in the incorporation of prior knowledge over the set of models. In this setting, the interplay of the regularization parameter, the reference measure, the risk function, and the empirical risk induced by the solution of the ERM-RER problem is characterized. This characterization yields necessary and sufficient conditions for the existence of a regularization parameter that achieves an arbitrarily small empirical risk with arbitrarily high probability. The sensitivity of the expected empirical risk to deviations from the solution of the ERM-RER problem is studied. The sensitivity is then used to provide upper and lower bounds on the expected empirical risk. Moreover, it is shown that the expectation of the sensitivity is upper bounded, up to a constant factor, by the square root of the lautum information between the models and the datasets.
翻译:在对相对加密正规化(ERM-RER)的经验风险最小化问题的最佳性和敏感性进行调查时,将调查在下述情况下的实验风险最小化问题的最佳性和敏感性,即,该参考值是一种比方的无限尺度,而不是一种概率尺度。这种一般化使得在将先前的知识纳入一套模型方面具有更大程度的灵活性。在这一背景下,对正规化参数、参考尺度、风险功能和由机构风险管理-RER问题解决方案引起的经验风险的相互作用进行了定性。这种定性生成了必要的和足够的条件,使得存在一个能够实现任意高概率的任意小的实验风险的正规化参数。研究了预期的经验风险对偏离机构风险管理-RER问题解决方案的敏感度。然后使用这种敏感度为预期的经验风险提供了上下界限。此外,还表明,根据模型和数据集之间的平方根,敏感度的预期值被上至一个恒定系数。