When a model's performance differs across socially or culturally relevant groups--like race, gender, or the intersections of many such groups--it is often called "biased." While much of the work in algorithmic fairness over the last several years has focused on developing various definitions of model fairness (the absence of group-wise model performance disparities) and eliminating such "bias," much less work has gone into rigorously measuring it. In practice, it important to have high quality, human digestible measures of model performance disparities and associated uncertainty quantification about them that can serve as inputs into multi-faceted decision-making processes. In this paper, we show both mathematically and through simulation that many of the metrics used to measure group-wise model performance disparities are themselves statistically biased estimators of the underlying quantities they purport to represent. We argue that this can cause misleading conclusions about the relative group-wise model performance disparities along different dimensions, especially in cases where some sensitive variables consist of categories with few members. We propose the "double-corrected" variance estimator, which provides unbiased estimates and uncertainty quantification of the variance of model performance across groups. It is conceptually simple and easily implementable without statistical software package or numerical optimization. We demonstrate the utility of this approach through simulation and show on a real dataset that while statistically biased estimators of model group-wise model performance disparities indicate statistically significant between-group model performance disparities, when accounting for statistical bias in the estimator, the estimated group-wise disparities in model performance are no longer statistically significant.

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
96+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
29+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
57+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
68+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
0+阅读 · 6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
3+阅读 · 3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
0+阅读 · 3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
0+阅读 · 2月13日
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
10+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
12+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
小贴士
相关VIP内容
专知会员服务
24+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
96+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
29+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
57+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
68+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
0+阅读 · 6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
3+阅读 · 3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
0+阅读 · 3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
0+阅读 · 2月13日
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
10+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
12+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员