The purpose of this work is to present an effective tool for computing different QR-decompositions of a complex nonsingular square matrix. The concept of the discrete signal-induced heap transform (DsiHT, Grigoryan 2006) is used. This transform is fast, has a unique algorithm for any length of the input vector/signal and can be used with different complex basic 2x2 transforms. The DsiHT zeroes all components of the input signal while moving or heaping the energy of the signal into one component, such as the first. We describe three different types of QR-decompositions that use the basic transforms with the T, G, and M-type complex matrices we introduce, and also without matrices, but using analytical formulas. We also present the mixed QR-decomposition, when different type DsiHTs are used at different stages of the algorithm. The number of such decompositions is greater than 3^((N-1)), for an NxN complex matrix. Examples of the QR-decomposition are described in detail for the 4x4 and 6x6 complex matrices and compared with the known method of Householder transforms. The precision of the QR-decompositions of NxN matrices, when N are 6, 13, 17, 19, 21, 40, 64, 100, 128, 201, 256, and 400 is also compared. The MATLAB-based scripts of the codes for QR-decompositions by the described DsiHTs are given.
翻译:这项工作的目的是提供一种有效的工具,用于计算复杂非星体矩阵的不同 QR 分解,使用离散信号诱发型变压(DsiHT,Grigoryyan 2006)的概念。这种变压是快速的,对输入矢量/信号的任何长度都有独特的算法,并且可以用于不同的复杂基本 2x2 变换。DsiHT 零是输入信号的所有组件,同时将信号的能量移动或将信号的能量升至一个组件,例如第一个。我们描述了三种不同类型的QR 分解,使用与T、G和M型复杂矩阵的基本变压(DsiHT, Grigoryoryan 2006),但使用分析公式。我们还展示了混合的 QR 变压值,在算法的不同阶段使用不同的 DsiHT 。在Nx 6 组合中, 给出的变压值大于 3NR(N1) 。我们描述了QR 变压的三种不同类型,在4x 和 21 的变压式 和 4x 矩阵中, 的变压式是已知的R 。