The spread of misinformation, propaganda, and flawed argumentation has been amplified in the Internet era. Given the volume of data and the subtlety of identifying violations of argumentation norms, supporting information analytics tasks, like content moderation, with trustworthy methods that can identify logical fallacies is essential. In this paper, we formalize prior theoretical work on logical fallacies into a comprehensive three-stage evaluation framework of detection, coarse-grained, and fine-grained classification. We adapt existing evaluation datasets for each stage of the evaluation. We devise three families of robust and explainable methods based on prototype reasoning, instance-based reasoning, and knowledge injection. The methods are designed to combine language models with background knowledge and explainable mechanisms. Moreover, we address data sparsity with strategies for data augmentation and curriculum learning. Our three-stage framework natively consolidates prior datasets and methods from existing tasks, like propaganda detection, serving as an overarching evaluation testbed. We extensively evaluate these methods on our datasets, focusing on their robustness and explainability. Our results provide insight into the strengths and weaknesses of the methods on different components and fallacy classes, indicating that fallacy identification is a challenging task that may require specialized forms of reasoning to capture various classes. We share our open-source code and data on GitHub to support further work on logical fallacy identification.
翻译:在互联网时代,错误信息、宣传和有缺陷的争论的传播范围已经扩大。鉴于数据的数量以及查明违反论证规范的行为的微妙性,因此,必须使用可识别逻辑谬误的可靠方法,例如内容节制,支持信息分析任务,例如内容分析任务,以可识别逻辑谬误的可靠方法。在本文件中,我们正式将关于逻辑谬误的理论性工作纳入一个全面的三阶段评价框架,即检测、粗略和细微的分类。我们为评估的每个阶段调整现有的评价数据集。我们根据原型推理、实例推理和知识注入,设计了三组强有力和可解释的方法。这些方法旨在将语言模型与背景知识和解释机制相结合。此外,我们用数据扩增和课程学习的战略来解决数据过度的问题。我们的三阶段框架将先前的数据集和方法与现有任务(如宣传探测和细微的分类)的三阶段性评估框架正式化为总体评价测试。我们广泛评估了我们数据库中的这些方法,侧重于其坚固性和可解释性。我们的成果为不同组成部分和易理解方法的优劣性提供了洞察和弱点。我们不同方法的精准性分析,我们如何理解性的工作需要进一步识别。我们如何判断性地确定数据。我们如何判断性的工作。