The standard procedure for computing the persistent homology of a filtered simplicial complex is the matrix reduction algorithm. Its output is a particular decomposition of the total boundary matrix, from which the persistence diagrams and generating cycles can be derived. Persistence diagrams are known to vary continuously with respect to their input; this motivates the algorithmic study of persistence computations for time-varying filtered complexes. Computationally, simulating persistence dynamically can be reduced to maintaining a valid decomposition under adjacent transpositions in the filtration order. In practice, the quadratic scaling in the number of transpositions often makes this maintenance procedure slower than simply computing the decomposition from scratch, effectively limiting the application of dynamic persistence to relatively small data sets. In this work, we propose a coarser strategy for maintaining the decomposition over a discrete 1-parameter family of filtrations. Our first result is an analysis of a simple linear-time strategy for reducing the number of column operations needed to simulate persistence across a fixed homotopy by at most a factor of 2. We then show a modification of this technique which maintains only a sublinear number of valid states, as opposed to a quadratic number of states, and we provide tight lower bounds for this technique. Finally, we provide empirical results suggesting that the decrease in operations needed to compute diagrams across a family of filtrations is proportional to the difference between the expected quadratic number of states, and the proposed sublinear coarsening.
翻译:计算过滤的简化合成物的持久性同质的标准程序是矩阵递减算法。 其输出是总边界矩阵的一个特殊的分解, 可以从中得出持久性图和生成周期。 常态图在输入方面已知会持续变化; 这促使对时间变化的过滤复合物的持久性计算进行算法性研究。 计算, 动态模拟持久性可以降低到在过滤顺序中相邻的变异状态下维持有效的分解状态。 实际上, 转换位置数量的二次缩放往往使这一维护程序比简单地从零开始计算分解状态、 有效地将动态持久性的应用限制在相对较小的数据集。 在这项工作中, 我们提出了一个粗化战略, 以维持在离散的 1 参数过滤组合上的分解。 我们的第一个结果是分析一个简单的线性线性时间战略, 以在固定的同质状态中模拟持续状态, 多数是相对的系数。 我们随后展示了从零到较细的分层操作方法的修改, 以我们最后的直径直线性结构, 提供一种我们所需要的直径直径的分数, 。