Substantial Gaussian splatting format point clouds require effective compression. In this paper, we propose Voxel-GS, a simple yet highly effective framework that departs from the complex neural entropy models of prior work, instead achieving competitive performance using only a lightweight rate proxy and run-length coding. Specifically, we employ a differentiable quantization to discretize the Gaussian attributes of Scaffold-GS. Subsequently, a Laplacian-based rate proxy is devised to impose an entropy constraint, guiding the generation of high-fidelity and compact reconstructions. Finally, this integer-type Gaussian point cloud is compressed losslessly using Octree and run-length coding. Experiments validate that the proposed rate proxy accurately estimates the bitrate of run-length coding, enabling Voxel-GS to eliminate redundancy and optimize for a more compact representation. Consequently, our method achieves a remarkable compression ratio with significantly faster coding speeds than prior art. The code is available at https://github.com/zb12138/VoxelGS.
翻译:高斯泼溅格式的点云数据通常需要高效的压缩方案。本文提出Voxel-GS,一种简洁而高效的框架,它摒弃了先前工作中复杂的神经熵模型,仅通过轻量化的码率代理与游程编码即可实现具有竞争力的性能。具体而言,我们采用可微分量化技术对Scaffold-GS的高斯属性进行离散化处理。随后,设计了一种基于拉普拉斯分布的码率代理以施加熵约束,从而引导生成高保真且紧凑的重建结果。最后,利用八叉树与游程编码对此整数型高斯点云进行无损压缩。实验验证表明,所提出的码率代理能够准确估计游程编码的实际比特率,使得Voxel-GS能够有效消除冗余并优化出更紧凑的表示形式。因此,本方法在显著提升编码速度的同时,实现了较现有技术更优异的压缩比。代码已开源:https://github.com/zb12138/VoxelGS。