Debugging is one of the most time-consuming and expensive tasks in software development. Several formula-based fault localization (FBFL) methods have been proposed, but they fail to guarantee a set of diagnoses across all failing tests or may produce redundant diagnoses that are not subset-minimal, particularly for programs with multiple faults. This paper introduces a novel fault localization approach for C programs with multiple faults. CFaults leverages Model-Based Diagnosis (MBD) with multiple observations and aggregates all failing test cases into a unified MaxSAT formula. Consequently, our method guarantees consistency across observations and simplifies the fault localization procedure. Experimental results on two benchmark sets of C programs, TCAS and C-Pack-IPAs, show that CFaults is faster than other FBFL approaches like BugAssist and SNIPER. Moreover, CFaults only generates subset-minimal diagnoses of faulty statements, whereas the other approaches tend to enumerate redundant diagnoses.
翻译:暂无翻译