Software comes in releases. An implausible change to software is something that has never been changed in prior releases. When planning how to reduce defects, it is better to use plausible changes, i.e., changes with some precedence in the prior releases. To demonstrate these points, this paper compares several defect reduction planning tools. LIME is a local sensitivity analysis tool that can report the fewest changes needed to alter the classification of some code module (e.g., from "defective" to "non-defective"). TimeLIME is a new tool, introduced in this paper, that improves LIME by restricting its plans to just those attributes which change the most within a project. In this study, we compared the performance of LIME and TimeLIME and several other defect reduction planning algorithms. The generated plans were assessed via (a) the similarity scores between the proposed code changes and the real code changes made by developers; and (b) the improvement scores seen within projects that followed the plans. For nine project trails, we found that TimeLIME outperformed all other algorithms (in 8 out of 9 trials). Hence, we strongly recommend using past releases as a source of knowledge for computing fixes for new releases (using TimeLIME). Apart from these specific results about planning defect reductions and TimeLIME, the more general point of this paper is that our community should be more careful about using off-the-shelf AI tools, without first applying SE knowledge. In this case study, it was not difficult to augment a standard AI algorithm with SE knowledge (that past releases are a good source of knowledge for planning defect reductions). As shown here, once that SE knowledge is applied, this can result in dramatically better systems.


翻译:软件在释放中出现。 对软件的不可信变化在先前的释放中从未改变过。 当计划如何减少缺陷时, 最好使用表面的改变, 也就是在先前的释放中有一些优先的改变。 为了展示这些观点, 本文比较了几个减少缺陷的规划工具。 LIME 是一个本地敏感度分析工具, 可以报告改变某些代码模块分类所需的最微小的改变( 例如, 从“不合格”到“不坏” ) 。 Time 是一个新工具, 在本文中引入了这个工具, 它通过将LIME的计划限制在仅仅改变项目内最大变化的属性上来改进 LIME 。 在这次研究中,我们比较了 LIME 和 TiLIME 和其他一些减少缺陷的规划算法的性能。 所产生的计划是通过 (a) 拟议的代码修改和开发者真实的代码修改之间的相似性分数; (b) 在计划后的项目中看到的改进分数。 对于9个项目来说, 我们发现 TiLIME 的排放量比所有其他算法都优于其他的算法( 在9次试验中应用了8次于9次数 实验中)。 因此, 我们强烈地建议使用SELe 将使用过去的精确的计算结果, 。

0
下载
关闭预览

相关内容

专知会员服务
118+阅读 · 2020年7月22日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年12月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月7日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
专知会员服务
118+阅读 · 2020年7月22日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2017年12月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员