We study countably infinite Markov decision processes (MDPs) with real-valued transition rewards. Every infinite run induces the following sequences of payoffs: 1. Point payoff (the sequence of directly seen transition rewards), 2. Total payoff (the sequence of the sums of all rewards so far), and 3. Mean payoff. For each payoff type, the objective is to maximize the probability that the $\liminf$ is non-negative. We establish the complete picture of the strategy complexity of these objectives, i.e., how much memory is necessary and sufficient for $\varepsilon$-optimal (resp. optimal) strategies. Some cases can be won with memoryless deterministic strategies, while others require a step counter, a reward counter, or both.
翻译:我们用真实价值的过渡奖励来研究无穷无尽的Markov决策程序(MDPs ) 。 每一场无限运行都引出以下一系列的回报: 1. 点回报(直接看到过渡奖励的顺序 ), 2. 全部回报(到目前为止所有奖励的金额顺序 ), 和 3. 平均回报。 对于每一种回报类型,目标是最大限度地提高美元/利宾美元并非负值的概率。 我们确定了这些目标的战略复杂性的完整图景,即对美元/瓦雷普西隆元-最佳(最佳)战略而言,多少记忆是必需和足够的。 有些案例可以用没有记忆的决定性战略获胜,而另一些则需要一步反弹、奖励反弹或两者兼而有之。