Recent advances in machine learning, coupled with low-cost computation, availability of cheap streaming sensors, data storage and cloud technologies, has led to widespread multi-disciplinary research activity with significant interest and investment from commercial stakeholders. Mechanistic models, based on physical equations, and purely data-driven statistical approaches represent two ends of the modelling spectrum. New hybrid, data-centric engineering approaches, leveraging the best of both worlds and integrating both simulations and data, are emerging as a powerful tool with a transformative impact on the physical disciplines. We review the key research trends and application scenarios in the emerging field of integrating simulations, machine learning, and statistics. We highlight the opportunities that such an integrated vision can unlock and outline the key challenges holding back its realisation. We also discuss the bottlenecks in the translational aspects of the field and the long-term upskilling requirements of the existing workforce and future university graduates.
翻译:最近机器学习的进展,加上低成本的计算,廉价流传传感器、数据储存和云技术的提供,导致广泛开展多学科研究活动,商业利益有关者对此有极大的兴趣和投资。基于物理方程的机械模型和纯粹以数据为驱动的统计方法代表了建模频谱的两个方面。新的混合型以数据为中心的工程方法,利用世界的最佳力量,并结合模拟和数据,正在成为一种强有力的工具,对物理学科产生变革性影响。我们审查了在综合模拟、机器学习和统计等新兴领域的主要研究趋势和应用设想。我们强调这种综合愿景能够释放的机会,并概述了阻碍其实现的主要挑战。我们还讨论了实地翻译方面的瓶颈以及现有劳动力和未来大学毕业生的长期技能要求。