Speaker-attributed automatic speech recognition (SA-ASR) is a task to recognize "who spoke what" from multi-talker recordings. An SA-ASR system usually consists of multiple modules such as speech separation, speaker diarization and ASR. On the other hand, considering the joint optimization, an end-to-end (E2E) SA-ASR model has recently been proposed with promising results on simulation data. In this paper, we present our recent study on the comparison of such modular and joint approaches towards SA-ASR on real monaural recordings. We develop state-of-the-art SA-ASR systems for both modular and joint approaches by leveraging large-scale training data, including 75 thousand hours of ASR training data and the VoxCeleb corpus for speaker representation learning. We also propose a new pipeline that performs the E2E SA-ASR model after speaker clustering. Our evaluation on the AMI meeting corpus reveals that after fine-tuning with a small real data, the joint system performs 9.2--29.4% better in accuracy compared to the best modular system while the modular system performs better before such fine-tuning. We also conduct various error analyses to show the remaining issues for the monaural SA-ASR.


翻译:由议长提供的自动语音识别(SA-ASR)是一项任务,旨在识别“谁能讲什么”来自多讲者录音的“谁能讲什么”的工作。SA-ASR系统通常由多个模块组成,例如语音分离、语音分化和ASR。另一方面,考虑到联合优化,最近提出了一个终端到终端(E2E)SA-ASR模式,在模拟数据方面产生了令人乐观的结果。我们在本文件中介绍了我们最近关于这种模块的比较的研究,以及在实际时尚记录上对SA-ASR的联合方法。我们通过利用大型培训数据,包括75 000小时的ASR培训数据以及用于演讲者代言学习的VoxCelebamp软件,开发了最先进的模块和联合方法的SA-ASR系统。我们还提议了一个新的管道,在发言者组合后实施E2E SA-ASR模式。我们对AMI会议材料的评估显示,在对小型真实数据进行微调后,联合系统比最佳模块化系统精确度要好9.2%-29.4 %,同时模块化系统在微调之前运行更好的模块系统。我们还进行各种错误分析,以待。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月7日
Joint model for intent and entity recognition
Arxiv
0+阅读 · 2021年9月7日
Arxiv
14+阅读 · 2021年6月30日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员