We consider the problem of computing the minimal nonnegative solution $G$ of the nonlinear matrix equation $X=\sum_{i=-1}^\infty A_iX^{i+1}$ where $A_i$, for $i\ge -1$, are nonnegative square matrices such that $\sum_{i=-1}^\infty A_i$ is stochastic. This equation is fundamental in the analysis of M/G/1-type Markov chains, since the matrix $G$ provides probabilistic measures of interest. A new family of fixed point iterations for the numerical computation of $G$, that includes the classical iterations, is introduced. A detailed convergence analysis proves that the iterations in the new class converge faster than the classical iterations. Numerical experiments confirm the effectiveness of our extension.


翻译:我们认为计算非线性矩阵方程式中最低非负式解决办法$G$($X ⁇ sum ⁇ i=-1 ⁇ infty A_iX ⁇ i+1}$A_i_Ge-1$是非负式矩阵,因此美元=1美元=-1 ⁇ infty A_i$是零碎的。这一公式对于分析M/G/1-型马科夫链来说至关重要,因为矩阵中美元提供了可比较的利息计量。引入了包括经典迭代在内的美元数字计算固定点代数的新组合。详细的趋同分析证明新类别中的迭代比传统迭代要快。数字实验证实了我们扩展的有效性。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
5+阅读 · 2019年3月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年3月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员