We consider the problem of computing the minimal nonnegative solution $G$ of the nonlinear matrix equation $X=\sum_{i=-1}^\infty A_iX^{i+1}$ where $A_i$, for $i\ge -1$, are nonnegative square matrices such that $\sum_{i=-1}^\infty A_i$ is stochastic. This equation is fundamental in the analysis of M/G/1-type Markov chains, since the matrix $G$ provides probabilistic measures of interest. A new family of fixed point iterations for the numerical computation of $G$, that includes the classical iterations, is introduced. A detailed convergence analysis proves that the iterations in the new class converge faster than the classical iterations. Numerical experiments confirm the effectiveness of our extension.
翻译:我们认为计算非线性矩阵方程式中最低非负式解决办法$G$($X ⁇ sum ⁇ i=-1 ⁇ infty A_iX ⁇ i+1}$A_i_Ge-1$是非负式矩阵,因此美元=1美元=-1 ⁇ infty A_i$是零碎的。这一公式对于分析M/G/1-型马科夫链来说至关重要,因为矩阵中美元提供了可比较的利息计量。引入了包括经典迭代在内的美元数字计算固定点代数的新组合。详细的趋同分析证明新类别中的迭代比传统迭代要快。数字实验证实了我们扩展的有效性。