In this paper, we focus on qualitative temporal sequences of topological information. We firstly consider the context of topological temporal sequences of length greater than 3 describing the evolution of regions at consecutive time points. We show that there is no Cartesian subclass containing all the basic relations and the universal relation for which the algebraic closure decides satisfiability. However, we identify some tractable subclasses, by giving up the relations containing the non-tangential proper part relation and not containing the tangential proper part relation. We then formalize an alternative semantics for temporal sequences. We place ourselves in the context of the topological temporal sequences describing the evolution of regions on a partition of time (i.e. an alternation of instants and intervals). In this context, we identify large tractable fragments.
翻译:在本文中,我们侧重于地貌信息的质量时间序列。我们首先考虑长于3的地貌时间序列的背景,描述连续时间点的区域演变情况。我们表明,没有Cartesian亚类包含代数封闭决定相对性的所有基本关系和普遍关系。然而,我们通过放弃包含非相近适当部分的关系和不包含相近适当部分关系的关系,确定一些可移动的子类。我们随后正式确定时间序列的替代语义。我们把自己置于描述时间分配(即瞬间和间隔的交替)区域演变的地形时间序列的背景下。我们在此情况下,我们确定大可移动的碎片。