A fuzzer provides randomly generated inputs to a targeted software to expose erroneous behavior. To efficiently detect defects, generated inputs should conform to the structure of the input format and thus, grammars can be used to generate syntactically correct inputs. In this context, fuzzing can be guided by probabilities attached to competing rules in the grammar, leading to the idea of probabilistic grammar-based fuzzing. However, the optimal assignment of probabilities to individual grammar rules to effectively expose erroneous behavior for individual systems under test is an open research question. In this paper, we present EvoGFuzz, an evolutionary grammar-based fuzzing approach to optimize the probabilities to generate test inputs that may be more likely to trigger exceptional behavior. The evaluation shows the effectiveness of EvoGFuzz in detecting defects compared to probabilistic grammar-based fuzzing (baseline). Applied to ten real-world applications with common input formats (JSON, JavaScript, or CSS3), the evaluation shows that EvoGFuzz achieved a significantly larger median line coverage for all subjects by up to 48% compared to the baseline. Moreover, EvoGFuzz managed to expose 11 unique defects, from which five have not been detected by the baseline.


翻译:模糊器向目标软件提供随机生成的投入,以暴露错误行为。 为了有效发现缺陷,生成的投入应该符合输入格式的结构,因此,语法可以用来生成同步正确投入。在这方面,模糊可以以与语法中相竞争规则相联的概率为指导,从而产生概率比比照法语法模糊性的概念。然而,将概率与个人语法规则的最佳分配,以有效暴露测试中单个系统的错误行为,这是一个开放的研究问题。在本文中,我们介绍了EvoGFuzz,一种基于语法的进化模糊法方法,以优化生成测试投入的概率,这种概率更有可能触发特殊行为。评估表明EvoGouzz在发现缺陷方面的效力,与以概率法为基础的语法模糊性(基线)相比。应用到具有共同输入格式的十种真实应用(JSON, JavaScript, 或CSS3),评估表明EvoGUFUzz在从一个显著的测算到EGF的基底线上没有达到一个比EGU的48的更大程度。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员