Session-based target behavior prediction aims to predict the next item to be interacted with specific behavior types (e.g., clicking). Although existing methods for session-based behavior prediction leverage powerful representation learning approaches to encode items' sequential relevance in a low-dimensional space, they suffer from several limitations. Firstly, they focus on only utilizing the same type of user behavior for prediction, but ignore the potential of taking other behavior data as auxiliary information. This is particularly crucial when the target behavior is sparse but important (e.g., buying or sharing an item). Secondly, item-to-item relations are modeled separately and locally in one behavior sequence, and they lack a principled way to globally encode these relations more effectively. To overcome these limitations, we propose a novel Multi-relational Graph Neural Network model for Session-based target behavior Prediction, namely MGNN-SPred for short. Specifically, we build a Multi-Relational Item Graph (MRIG) based on all behavior sequences from all sessions, involving target and auxiliary behavior types. Based on MRIG, MGNN-SPred learns global item-to-item relations and further obtains user preferences w.r.t. current target and auxiliary behavior sequences, respectively. In the end, MGNN-SPred leverages a gating mechanism to adaptively fuse user representations for predicting next item interacted with target behavior. The extensive experiments on two real-world datasets demonstrate the superiority of MGNN-SPred by comparing with state-of-the-art session-based prediction methods, validating the benefits of leveraging auxiliary behavior and learning item-to-item relations over MRIG.


翻译:以会话为基础的目标行为预测旨在预测下一个项目将与具体行为类型(例如,点击)互动(例如,点击)的下一个项目。虽然目前基于会话的行为预测方法利用强大的代表性学习方法,在低维空间中将项目相继关联性编码,但它们受到若干限制。首先,它们只侧重于使用同类用户行为进行预测,而忽视将其他行为数据作为辅助信息的可能性。当目标行为少而重要(例如,购买或分享一个项目)时,这一点特别重要。第二,项目与项目之间的关系以一个行为序列分别建模和在当地建模,而且它们缺乏在全球范围更有效地编码这些关系的有原则性方法。为了克服这些限制,我们提出了一个新的基于会话的目标行为预测的多关系图形网络模型,即短的MGNNP-SP。具体地说,我们根据所有会议的所有行为序列(包括目标性和辅助行为类型)建立多关系项目-项目关系图。基于MG、MN-SP红外的预测性、全球项目对项目-项目-项目-项目关系和项目-项目-项目-项目-项目-项目-项目-项目-项目-图像的升级,分别通过IMFIL 用户的精确定位、对用户-目标-图像的模拟的精确-动作的精确-动作、对当前-周期的模拟、对用户-系统-动作的模拟、对用户-系统-周期-周期-周期-周期-周期-动作的精确的模拟的模拟、对用户-动作的精确的模拟的精确的精确性、对等的模拟的模拟、对等的精确-动作、对用户-动作的周期的精确的模拟、对等的模拟、对等的模拟、对等的精确-行为-行为-对等的精确-对等的精确-对等的精确-对等的精确-对等的周期-对等的精确-对结果-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对结果的精确-对等的精确-对等的精确-对等的精确-对等的精确-对等的精确-对

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
10+阅读 · 2019年2月19日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
6+阅读 · 2018年3月28日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员