Recent progress in deep learning is revolutionizing the healthcare domain including providing solutions to medication recommendations, especially recommending medication combination for patients with complex health conditions. Existing approaches either do not customize based on patient health history, or ignore existing knowledge on drug-drug interactions (DDI) that might lead to adverse outcomes. To fill this gap, we propose the Graph Augmented Memory Networks (GAMENet), which integrates the drug-drug interactions knowledge graph by a memory module implemented as a graph convolutional networks, and models longitudinal patient records as the query. It is trained end-to-end to provide safe and personalized recommendation of medication combination. We demonstrate the effectiveness and safety of GAMENet by comparing with several state-of-the-art methods on real EHR data. GAMENet outperformed all baselines in all effectiveness measures, and also achieved 3.60% DDI rate reduction from existing EHR data.
翻译:最近深层学习的进展正在使保健领域发生革命性的变化,包括提供药物建议的解决办法,特别是建议为有复杂健康状况的病人提供药物组合; 现有的方法不是不根据病人健康史定制,就是忽视现有的药物-药物相互作用知识,这种知识可能导致不利的结果; 为了填补这一空白,我们提议建立图表增强记忆网络(GAMENet),它通过一个作为图变网络的记忆模块整合药物-药物相互作用知识图,以及作为查询的模型模拟纵向病人记录; 培训端对端以提供安全和个性化的药物组合建议; 我们通过在实际EHR数据方面与一些最先进的方法进行比较,来证明GAMENet的有效性和安全性; GAMENet在所有有效性措施中都超越了所有基线,并且还实现了从现有的EHR数据中减少3.60%的DDI率。