We present an algorithm for strongly refuting smoothed instances of all Boolean CSPs. The smoothed model is a hybrid between worst and average-case input models, where the input is an arbitrary instance of the CSP with only the negation patterns of the literals re-randomized with some small probability. For an $n$-variable smoothed instance of a $k$-arity CSP, our algorithm runs in $n^{O(\ell)}$ time, and succeeds with high probability in bounding the optimum fraction of satisfiable constraints away from $1$, provided that the number of constraints is at least $\tilde{O}(n) (\frac{n}{\ell})^{\frac{k}{2} - 1}$. This matches, up to polylogarithmic factors in $n$, the trade-off between running time and the number of constraints of the state-of-the-art algorithms for refuting fully random instances of CSPs [RRS17]. We also make a surprising new connection between our algorithm and even covers in hypergraphs, which we use to positively resolve Feige's 2008 conjecture, an extremal combinatorics conjecture on the existence of even covers in sufficiently dense hypergraphs that generalizes the well-known Moore bound for the girth of graphs. As a corollary, we show that polynomial-size refutation witnesses exist for arbitrary smoothed CSP instances with number of constraints a polynomial factor below the "spectral threshold" of $n^{k/2}$, extending the celebrated result for random 3-SAT of Feige, Kim and Ofek [FKO06].
翻译:我们展示了强烈否定所有布利安 CSP 平滑实例的算法。 平滑模型是最差和平均情况输入模型的混合体, 输入是CSP 任意的例子, 只有字本重新调整时的否定模式, 概率很小。 $$- ity CSP 的折叠式平滑实例, 我们的算法以$ ⁇ O( ell) 时间运行, 成功率很高, 将可比较的限制性限制的最佳部分与$( $) 调离开, 只要限制的数量至少是 $\ tilde{ O} (n) 任意的 CSP 任意例子, 而只有字本重新调整时的否定模式。 这匹配了美元( $- $- O( ell) ) - 1}, 运行时和 状态- 算法的制约数量, 以完全否定 CSP 的直径直线( RRS17 ) 。 我们还在“ 直径直线( ) 直径解) 直线( 直径直径直径直径直) 和直径直径直径直径直线( 直径) 直线) 直线) 直径直线) 的解( 直线) 上线) 的解) 的解( 直线) 和直径直径直径直) 的解) 。 我们还做了一个新的连接了我们算法和直线( 直线) 直) 直线) 直线( 直) 直线) 直线) 。