Physics-Informed Neural Networks (PINNs) are a methodology that aims to solve physical systems by directly embedding PDE constraints into the neural network training process. In electromagnetism, where well-established methodologies such as FDTD and FEM already exist, new methodologies are expected to provide clear advantages to be accepted. Despite their mesh-free nature and applicability to inverse problems, PINNs can exhibit deficiencies in terms of accuracy and energy metrics when compared to FDTD solutions. This study demonstrates hybrid training strategies can bring PINNs closer to FDTD-level accuracy and energy consistency. This study presents a hybrid methodology addressing common challenges in wave propagation scenarios. The causality collapse problem in time-dependent PINN training is addressed via time marching and causality-aware weighting. In order to mitigate the discontinuities that are introduced by time marching, a two-stage interface continuity loss is applied. In order to suppress loss accumulation, which is manifested as cumulative energy drift in electromagnetic waves, a local Poynting-based regularizer has been developed. In the developed PINN model, high field accuracy is achieved with an average 0.09\% $NRMSE$ and 1.01\% $L^2$ error over time. Energy conservation is achieved on the PINN side with only a 0.024\% relative energy mismatch in the 2D PEC cavity scenario. Training is performed without labeled field data, using only physics-based residual losses; FDTD is used solely for post-training evaluation. The results demonstrate that PINNs can achieve competitive results with FDTD in canonical electromagnetic examples and are a viable alternative.


翻译:物理信息神经网络(PINNs)是一种通过将偏微分方程约束直接嵌入神经网络训练过程来解决物理系统的方法。在电磁学领域,尽管已存在如时域有限差分法(FDTD)和有限元法(FEM)等成熟方法,新方法仍需展现出明显优势才能被广泛接受。尽管PINNs具有无网格特性且适用于反问题求解,但与FDTD解相比,其在精度和能量指标方面仍存在不足。本研究证明,混合训练策略可使PINNs在精度和能量一致性上接近FDTD水平。本文提出一种混合方法,以应对波传播场景中的常见挑战。针对时间相关PINN训练中的因果性崩溃问题,通过时间步进与因果感知加权策略予以解决。为缓解时间步进引入的间断性,采用了两阶段界面连续性损失函数。为抑制电磁波中表现为累积能量漂移的误差积累,开发了基于局部坡印廷矢量的正则化器。在所开发的PINN模型中,实现了较高的场精度:随时间变化的平均归一化均方根误差(NRMSE)为0.09%,L²误差为1.01%。在二维理想电导体腔体场景中,PINN侧实现了能量守恒,相对能量失配率仅为0.024%。训练过程无需标注场数据,仅使用基于物理的残差损失;FDTD仅用于训练后评估。结果表明,在经典电磁学案例中,PINNs能够取得与FDTD相竞争的结果,是一种可行的替代方案。

0
下载
关闭预览

相关内容

【剑桥大学-算法手册】Advanced Algorithms, Artificial Intelligence
专知会员服务
36+阅读 · 2024年11月11日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
【ICLR2022】Vision Transformer 模型工作机制的最新理论
专知会员服务
43+阅读 · 2022年2月19日
【ICML2021】具有线性复杂度的Transformer的相对位置编码
专知会员服务
25+阅读 · 2021年5月20日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Why Smooth Stability Assumptions Fail for ReLU Learning
VIP会员
相关VIP内容
【剑桥大学-算法手册】Advanced Algorithms, Artificial Intelligence
专知会员服务
36+阅读 · 2024年11月11日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
24+阅读 · 2022年2月27日
【ICLR2022】Vision Transformer 模型工作机制的最新理论
专知会员服务
43+阅读 · 2022年2月19日
【ICML2021】具有线性复杂度的Transformer的相对位置编码
专知会员服务
25+阅读 · 2021年5月20日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员