Intelligent resident surveillance is one of the most essential smart community services. The increasing demand for security needs surveillance systems to be able to detect anomalies in surveillance scenes. Employing high-capacity computational devices for intelligent surveillance in residential societies is costly and not feasible. Therefore, we propose anomaly detection for intelligent surveillance using CPU-only edge devices. A modular framework to capture object-level inferences and tracking is developed. To cope with partial occlusions, posture deformations, and complex scenes, we employed feature encoding and trajectory association governed by two metrices complementing to each other. The elements of an anomaly detection framework are optimized to run on CPU-only edge devices with sufficient frames per second (FPS). The experimental results indicate the proposed method is feasible and achieves satisfactory results in real-life scenarios.
翻译:智能居民监视是最基本的智能社区服务之一。对安全监视系统的需求日益增加,需要能够探测监视场景中的异常现象。在住宅社会使用高容量的智能监视计算装置是昂贵的,也是不可行的。因此,我们建议使用CPU专用边缘装置进行智能监视时检测异常现象。开发了一个模块化框架,以捕捉物体级别的推理和跟踪。为了应对部分隔离、态势变形和复杂场景,我们采用了特征编码和轨迹关联,由两个尺度加以补充。异常探测框架的元素被优化,在每秒有足够框架的CPU专用边缘装置上运行。实验结果表明,拟议方法是可行的,在现实生活中取得了令人满意的结果。