When performing visual servoing or object tracking tasks, active sensor planning is essential to keep targets in sight or to relocate them when missing. In particular, when dealing with a known target missing from the sensor's field of view, we propose using prior knowledge related to contextual information to estimate its possible location. To this end, this study proposes a Dynamic Bayesian Network that uses contextual information to effectively search for targets. Monte Carlo particle filtering is employed to approximate the posterior probability of the target's state, from which uncertainty is defined. We define the robot's utility function via information-theoretic formalism as seeking the optimal action which reduces uncertainty of a task, prompting robot agents to investigate the location where the target most likely might exist. Using a context state model, we design the agent's high-level decision framework using a Partially-Observable Markov Decision Process. Based on the estimated belief state of the context via sequential observations, the robot's navigation actions are determined to conduct exploratory and detection tasks. By using this multi-modal context model, our agent can effectively handle basic dynamic events, such as obstruction of targets or their absence from the field of view. We implement and demonstrate these capabilities on a mobile robot in real-time.
翻译:执行视觉悬浮或物体跟踪任务时, 积极的传感器规划对于保持目标的视线或当目标丢失时将其移位至关重要。 特别是, 当处理传感器视野中缺失的已知目标时, 我们提议使用与背景信息有关的先前知识来估计其可能的位置。 为此, 本研究提议建立一个动态贝叶西亚网络, 使用背景信息来有效搜索目标。 蒙特卡洛粒子过滤用于通过测测测来接近目标状态的后继概率, 由此确定不确定性。 我们通过信息理论形式主义来定义机器人的实用功能, 以寻求减少任务不确定性的最佳行动, 促使机器人代理人调查最有可能存在目标的地点。 使用上下文状态模型, 我们设计该代理人的高层决策框架, 使用部分可观测的马尔科夫决定程序 。 根据对环境的假设状态, 机器人的导航行动决定进行探索和检测任务。 通过使用这一多模式, 我们的代理人可以有效地处理基本动态事件, 例如阻碍目标或移动能力。