In this work, we examine the potential of autonomous operation of a reconfigurable intelligent surface (RIS) using wireless energy harvesting from information signals. To this end, we first identify the main RIS power-consuming components and introduce a suitable power-consumption model. Subsequently, we introduce a novel RIS power-splitting architecture that enables simultaneous energy harvesting and beamsteering. Specifically, a subset of the RIS unit cells (UCs) is used for beamsteering while the remaining ones absorb energy. For the subset allocation, we propose policies obtained as solutions to two optimization problems. The first problem aims at maximizing the signal-to-noise ratio (SNR) at the receiver without violating the RIS's energy harvesting demands. Additionally, the objective of the second problem is to maximize the RIS harvested power, while ensuring an acceptable SNR at the receiver. We prove that under particular propagation conditions, some of the proposed policies deliver the optimal solution of the two problems. Furthermore, we report numerical results that reveal the efficiency of the policies with respect to the optimal and very high-complexity brute-force design approach. Finally, through a case study of user tracking, we showcase that the RIS power-consumption demands can be secured by harvesting energy from information signals.
翻译:在这项工作中,我们研究利用信息信号的无线能源采集,对智能智能表面(RIS)进行自主操作的可能性;为此目的,我们首先确定主要的RIS电耗组件,并采用适当的电力消耗模式;随后,我们推出新的RIS分电结构,以便能够同时进行能源采集和波束处理;具体地说,一些RIS单元单元单元(UCs)用于波束,而其余的单元吸收能源;关于子组分配,我们提出政策,作为两个优化问题的解决办法;第一个问题旨在最大限度地提高接收器的信号对噪音比率,同时不违反IRS的能源采集要求;此外,第二个问题的目标是最大限度地扩大RIS所获取的电力,同时确保接收器获得可接受的SNR。我们证明,在特定的传播条件下,一些拟议的政策可以提供两个问题的最佳解决办法。此外,我们报告数字结果,显示政策在最佳和非常高集成的粗力设计方法方面的效率。第一个问题的目的是在不违反RIS的能源采集要求的情况下,使接收器的信号最大化;最后,第二个问题的目标是最大限度地增加RISIS所获取的能量,通过对用户进行案例研究,从而显示我们获得的能量采集的能源信号。