In psychoanalysis, generating interpretations to one's psychological state through visual creations is facing significant demands. The two main tasks of existing studies in the field of computer vision, sentiment/emotion classification and affective captioning, can hardly satisfy the requirement of psychological interpreting. To meet the demands for psychoanalysis, we introduce a challenging task, \textbf{V}isual \textbf{E}motion \textbf{I}nterpretation \textbf{T}ask (VEIT). VEIT requires AI to generate reasonable interpretations of creator's psychological state through visual creations. To support the task, we present a multimodal dataset termed SpyIn (\textbf{S}and\textbf{p}la\textbf{y} \textbf{In}terpretation Dataset), which is psychological theory supported and professional annotated. Dataset analysis illustrates that SpyIn is not only able to support VEIT, but also more challenging compared with other captioning datasets. Building on SpyIn, we conduct experiments of several image captioning method, and propose a visual-semantic combined model which obtains a SOTA result on SpyIn. The results indicate that VEIT is a more challenging task requiring scene graph information and psychological knowledge. Our work also show a promise for AI to analyze and explain inner world of humanity through visual creations.


翻译:在心理分析中,通过视觉创作对一个人的心理状态产生解释,正面临着巨大的需求。在计算机视觉、情绪/情绪分类和情感字幕领域的现有研究的两个主要任务中,计算机视觉、情绪/情绪分类和情感字幕领域的两种主要任务都很难满足心理解释的要求。为了满足心理分析的要求,我们引入了一个具有挑战性的任务,即\ textbf{V}V}sual {Vitual {textbf{E}motion\ textbf{I}sterpectation \ textb{Tyask (VeIT).VeIT需要AI通过视觉创作对创造者的心理状态作出合理的解释。为了支持这项任务,我们推出一个名为SpyIn(\ textbf{S}和\ textb{p}la\ textbb{pf{y}\ textb{y} 这样的数据集,我们引入了一种具有挑战性的结果, 通过直观和直观的图来展示一个具有挑战性的结果。</s>

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员