While meta-analyzing retrospective cancer patient cohorts, an investigation of differences in the expressions of target oncogenes across cancer subtypes is of substantial interest because the results may uncover novel tumorigenesis mechanisms and improve screening and treatment strategies. Weighting methods facilitate unconfounded comparisons of multigroup potential outcomes in multiple observational studies. For example, Guha et al. (2022) introduced concordant weights, allowing integrative analyses of survival outcomes by maximizing the effective sample size. However, it remains unclear how to use this or other weighting approaches to analyze a variety of continuous, categorical, ordinal, or multivariate outcomes, especially when research interests prioritize uncommon or unplanned estimands suggested by post hoc analyses; examples include percentiles and moments of group potential outcomes and pairwise correlations of multivariate outcomes. This paper proposes a unified meta-analytical approach accommodating various types of endpoints and fosters new estimators compatible with most weighting frameworks. Asymptotic properties of the estimators are investigated under mild assumptions. For undersampled groups, we devise small-sample procedures for quantifying estimation uncertainty. We meta-analyze multi-site TCGA breast cancer data, shedding light on the differential mRNA expression patterns of eight targeted genes for the subtypes infiltrating ductal carcinoma and infiltrating lobular carcinoma.


翻译:虽然对癌症追溯性癌症患者群群进行元分析,但调查癌症亚型癌症子类型中致癌物指标表达方式的差异很有意义,因为研究结果可能会发现新的肿瘤产生机制,改进筛选和治疗战略。加权方法有助于在多观察研究中无根据地比较多组潜在结果。例如,Guha等人(2022年)引入了一致加权,允许通过尽量扩大有效抽样规模对生存结果进行综合分析。然而,仍然不清楚如何使用这种或其他加权方法来分析各种连续的、绝对的、或异质的或多变性的结果,特别是当研究兴趣优先考虑后分析提出的异常或无计划的估计时;例子包括群体潜在结果的百分位数和时刻以及多变性结果的对称相关性。本文件提出一种统一的元分析方法,容纳各种类型的终点和培养与大多数加权框架相匹配的新估计。根据温和的假设,对估测师的厌性特性进行了调查。对于未受标定的团体而言,我们设计了用于量化定定型型型型的多类型癌症的微额研究。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月20日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员